```
OKLAHOMA STATE UNIVERSITY
    SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
    SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING
```



## ECEN/MAE 5513

Stochastic Systems
Fall 2011
Final Exam


PICK FIVE OUT OF ALL SIX PROBLEMS
Please specify which FIVE problems to be graded:
$\qquad$ , $\qquad$ , $\qquad$ , $\qquad$ , and $\qquad$ .

Name : $\qquad$

E-Mail Address: $\qquad$

## Problem 1:

Let $X$ be a Rayleigh random variable with $a=0$. Find the probability that $X$ will have values larger than its mode.

Please note from Homework Assignment \#3:
Problem 5: Verify that the maximum value of $f_{X}(x)$ in which

$$
f_{X}(x)=\frac{2}{b}(x-a) e^{-(x-a)^{2} / b} u(x-a)
$$

for the Rayleigh density function occurs at $x=a+\sqrt{b / 2}$ and is equal to $\sqrt{2 / b} \exp (-1 / 2) \approx 0.607 \sqrt{2 / b}$. This value of $x$ is called the mode of the random variable.

## Problem 2:

A random variable $X$ undergoes the transformation $Y=a / X$, where $a$ is a real number. Find the density function of $Y, f_{Y}(y)$.

Please note $F_{Y}(y)=P\{Y \leq y\}=P\{x \mid Y \leq y\}=\int_{\{x \mid Y \leq y\}} f_{X}(x) d x$

## Problem 3:

The locations of hits of darts thrown at a round dartboard of radius $r$ are determined by a vector random variable with components $X$ and $Y$. The joint density of $X$ and Y is uniform, that is

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
1 / \pi r^{2}, & x^{2}+y^{2}<r^{2} \\
0, & \text { elsewhere }
\end{array}\right.
$$

Find the densities of $X$ and $Y$.

## Problem 4:

For two statistically independent random variables $X$ and $Y$ show that

$$
P\{Y \leq X\}=\int_{-\infty}^{\infty} F_{Y}(x) f_{X}(x) d x
$$

or

$$
P\{Y \leq X\}=1-\int_{-\infty}^{\infty} F_{X}(y) f_{Y}(y) d y .
$$

## Problem 5:

Consider random processes

$$
\begin{aligned}
& X(t)=A \cos \left(\omega_{0} t+\Theta\right) \\
& Y(t)=B \cos \left(\omega_{1} t+\Phi\right)
\end{aligned}
$$

where $A, B, \omega_{1}$, and $\omega_{0}$ are constants, while $\Theta$ and $\Phi$ are statistically independent random variables each uniform on $(0,2 \pi)$.
a) Show that $X(t)$ and $Y(t)$ are jointly wide-sense stationary.
b) If $\Theta=\Phi$, show that $X(t)$ and $Y(t)$ are not jointly wide-sense stationary, unless $\omega_{1}=\omega_{0}$.

## Problem 6:

A Gaussian random process has an autocorrelation function

$$
R_{X X}(\tau)=6 \frac{\sin (\pi \tau)}{\pi \tau}
$$

Determine a covariance matrix for the random variables $X(t), X(t+1), X(t+2)$ and $X(t+3)$.

